
Learning nested systems
using auxiliary coordinates

❦

Miguel Á. Carreira-Perpi ñán

Electrical Engineering and Computer Science

University of California, Merced

http://eecs.ucmerced.edu

work with Weiran Wang

http://eecs.ucmerced.edu
http://eecs.ucmerced.edu

Nested (hierarchical) systems: examples

Common in computer vision, speech processing, machine learning. . .

❖ Object recognition pipeline:

pixels → SIFT/HoG →
k-means

sparse coding → pooling → classifier → object category

❖ Phone classification pipeline:
waveform → MFCC/PLP → classifier → phoneme label

❖ Preprocessing for regression/classification:
image pixels → PCA/LDA → classifier → output/label

❖ Deep net: x→ {σ(wT
i x+ ai)} → {σ(wT

j {σ(w
T
i x+ ai)}) + bj} → · · · → y

x y
W1 W2 W3 W4

σ

σ

σ

σσ

σ

p. 1

Nested systems

Mathematically, they construct a (deeply) nested, parametric mapping
from inputs to outputs:

f(x;W) = fK+1(. . . f2(f1(x;W1);W2) . . . ;WK+1)

❖ Each layer (processing stage) has its own trainable parameters
(weights) Wk.

❖ Each layer performs some (nonlinear, nondifferentiable) processing
on its input, extracting ever more sophisticated features from it
(ex.: pixels → edges → parts → · · ·)

❖ Often inspired by biological brain processing
(e.g. retina → LGN → V1 → · · ·)

❖ The ideal performance is when the parameters at all layers are
jointly optimised towards the overall goal (e.g. classification error).
This work is about how to do this easily and efficiently.

p. 2

Shallow vs deep (nested) systems

Shallow systems: 0 to 1 hidden layer between input and output.

❖ Often convex problem: linear function, linear SVM, LASSO, etc.
. . . Or “forced” to be convex: f(x) =

∑M

m=1wmφm(x):
✦ RBF network: fix nonlinear basis functions φm (e.g. k-means),

then fix linear weights wm.
✦ SVM: basis functions (support vectors) result from a QP.

❖ Practically useful:
✦ Linear function: robust (particularly with high-dim data, small

samples).
✦ Nonlinear function: very accurate if using many BFs (wide

hidden layer).

❖ Easy to train: no local optima; no need for nonlinear optimisation
linear system, LP/QP, eigenproblem, etc.

p. 3

Shallow vs deep (nested) systems (cont.)

Deep (nested) systems: at least one hidden layer:

❖ Examples: deep nets; “wrapper” regression/classification;
CV/speech pipelines.

❖ Nearly always nonconvex
The composition of functions is nonconvex in general.

❖ Practically useful: powerful nonlinear function
Depending on the number of layers and of hidden units/BFs.

❖ May be better than shallow systems for some problems.

❖ Difficult to train: local optima; requires nonlinear optimisation, or
suboptimal approach.

How does one train a nested system?

p. 4

Training nested systems: backpropagated gradient

❖ Apply the chain rule, layer by layer, to obtain a gradient wrt all the
parameters.
Ex.: ∂

∂g
(g(F(·))) = g′(F(·)), ∂

∂F
(g(F(·))) = g′(F(·))F′(·).

Then feed to nonlinear optimiser.
Gradient descent, CG, L-BFGS, Levenberg-Marquardt, Newton, etc.

❖ Major breakthrough in the 80s with neural nets.
It allowed to train multilayer perceptrons from data.

❖ Disadvantages:
✦ requires differentiable layers

in order to apply the chain rule

✦ the gradient is cumbersome to compute, code and debug
✦ requires nonlinear optimisation
✦ vanishing gradients ⇒ ill-conditioning ⇒ slow progress even

with second-order methods
This gets worse the more layers we have.

p. 5

Training nested systems: layerwise, “filter”

❖ Fix each layer sequentially (in some way).

❖ Fast and easy, but suboptimal.
The resulting parameters are not a minimum of the joint objective function.

Sometimes the results are not very good.

❖ Sometimes used to initialise the parameters and refine the model
with backpropagation (“fine tuning”).

Examples:

❖ Deep nets:
✦ Unsupervised pretraining (Hinton & Salakhutdinov 2006)

✦ Supervised greedy layerwise training (Bengio et al. 2007)

❖ RBF networks: the centres of the first (nonlinear) layer’s basis
functions are set in an unsupervised way
k-means, random subset

p. 6

Training nested systems: layerwise, “filter” (cont.)

“Filter” vs “wrapper” approaches: consider a nested mapping g(F(x))
(e.g. F reduces dimension, g classifies). How to train F and g?

Filter approach:

❖ Greedy sequential training:
1. Train F (the “filter”):

✦ Unsupervised: use only the input data {xn}
PCA, k-means, etc.

✦ Supervised: use the input and output data {(xn,yn)}
LDA, sliced inverse regression, etc.

2. Fix F, train g: fit a classifier with inputs {F(xn)} and labels {yn}.

❖ Very popular; F is often a fixed “preprocessing” stage.

❖ Works well if using a good objective function for F.

❖ . . . But is still suboptimal: the preprocessing may not be the best
possible for classification.

p. 7

Training nested systems: layerwise, “filter” (cont.)

Wrapper approach:

❖ Train F and g jointly to minimise the classification error.
This is what we would like to do.

❖ Optimal: the preprocessing is the best possible for classification.

❖ Even if local optima exist, initialising it from the “filter” result will give
a better model.

❖ Rarely done in practice.

❖ Disadvantage: same problems as with backpropagation.
Requires a chain rule gradient, difficult to compute, nonlinear optimisation, slow.

p. 8

Training nested systems: model selection

Finally, we also have to select the best architecture:

❖ Number of units or basis functions in each layer of a deep net;
number of filterbanks in a speech front-end processing; etc.

❖ Requires a combinatorial search, training models for each
hyperparameter choice and picking the best
according to a model selection criterion, cross-validation, etc.

❖ In practice, this is approximated using expert know-how:
✦ Train only a few models, pick the best from there.
✦ Fix the parameters of some layers irrespective of the rest of the

pipeline.

Very costly in runtime, in effort and expertise required, and leads to
suboptimal solutions.

p. 9

Summary

Nested systems:

❖ Ubiquitous way to construct nonlinear trainable functions

❖ Powerful

❖ Intuitive

❖ Difficult to train:
✦ Layerwise: easy but suboptimal
✦ Backpropagation: optimal but slow, difficult to implement, needs

differentiable layers.

p. 10

The method of auxiliary coordinates (MAC)

❖ A general strategy to train all parameters of a nested system.

❖ Enjoys the benefits of layerwise training (fast, easy steps) but with
optimality guarantees.

❖ Embarrassingly parallel iterations.

❖ Not an algorithm but a meta-algorithm (like EM).

❖ Basic idea:
1. Turn the nested problem into a constrained optimisation problem

by introducing new parameters to be optimised over (the
auxiliary coordinates).

2. Optimise the constrained problem with a penalty method.
3. Optimise the penalty objective function with alternating

optimisation.
Result: alternate “layerwise training” steps with “coordination”
steps.

p. 11

The nested objective function

Consider for simplicity:

❖ a single hidden layer: x → F(x) → g(F(x))

❖ a least-squares regression for inputs {xn}
N
n=1 and outputs {yn}

N
n=1:

minEnested(F,g) =
1

2

N∑

n=1

‖yn − g(F(xn))‖
2

F, g have their own parameters (weights).
We want to find a local minimum of Enested.

p. 12

The MAC-constrained problem

Transform the problem into a constrained one in an augmented space:

minE(F,g,Z) =
1

2

N∑

n=1

‖yn − g(zn)‖
2

s.t. zn = F(xn) n = 1, . . . , N.

❖ For each data point, we turn the subexpression F(xn) into an
equality constraint associated with a new parameter zn (the
auxiliary coordinates).
Thus, a constrained problem with N equality constraints and new parameters Z = (z1, . . . , zN).

❖ We optimise over (F,g) and Z jointly.

❖ Equivalent to the nested problem.

p. 13

The MAC quadratic-penalty function

We solve the constrained problem with the quadratic-penalty method:
we minimise the following while driving the penalty parameter µ → ∞:

minEQ(F,g,Z;µ) =
1

2

N∑

n=1

‖yn − g(zn)‖
2 +

µ

2

N∑

n=1

‖zn − F(xn)‖
2

︸ ︷︷ ︸

constraints as
quadratic penalties

We can also use the augmented Lagrangian method instead:

minEL(F,g,Z,Λ;µ) =
1

2

N
∑

n=1

‖yn − g(zn)‖
2 +

N
∑

n=1

λ
T
n (zn − F(xn)) +

µ

2

N
∑

n=1

‖zn − F(xn)‖
2

For simplicity, we focus on the quadratic-penalty method.

p. 14

What have we achieved?

❖ Net effect: unfold the nested objective into shallow additive terms
connected by the auxiliary coordinates:

Enested(F,g) =
1

2

N∑

n=1

‖yn − g(F(xn))‖
2 =⇒

EQ(F,g,Z;µ) =
1

2

N∑

n=1

‖yn − g(zn)‖
2 +

µ

2

N∑

n=1

‖zn − F(xn)‖
2

❖ All terms equally scaled, but uncoupled.
Vanishing gradients less problematic.

Derivatives required are simpler: no backpropagated gradients, sometimes no gradients at all.

❖ Optimising Enested follows a convoluted trajectory in (F,g) space.

❖ Optimising EQ can take shortcuts by jumping across Z space.
This corresponds to letting the layers mismatch during the optimisation.

p. 15

Alternating optimisation of the MAC/QP objective

(F,g) step, for Z fixed:

min
g

1

2

N∑

n=1

‖yn − g(zn)‖
2 min

F

1

2

N∑

n=1

‖zn − F(xn)‖
2

❖ Layerwise training: each layer is trained independently (not sequentially):

✦ fit g to {(zn,yn)}
N
n=1 (gradient needed: g′(·))

✦ fit F to {(xn, zn)}
N
n=1 (gradient needed: F′(·))

❖ Usually simple fit, even convex.

❖ Can be done by using existing algorithms for shallow models
linear, logistic regression, SVM, RBF network, k-means, decision tree, etc.

Does not require backpropagated gradients.

p. 16

Alternating optimisation of the MAC/QP objective (cont.)

Z step, for (F,g) fixed:

min
zn

1

2
‖yn − g(zn)‖

2 +
µ

2
‖zn − F(xn)‖

2
n = 1, . . . , N

❖ The auxiliary coordinates are trained independently for each point.
N small problems (of size |zn|) instead of one large problem (of size N |zn|).

❖ They “coordinate” the layers.

❖ Has the form of a proximal operator.
minz f(z) +

µ
2
‖z− u‖2

❖ The solution has a geometric flavour (“projection”).

❖ Often closed-form (depending on the model).

p. 17

Alternating optimisation of the MAC/QP objective (cont.)

MAC/QP is a “coordination-minimisation” (CM) algorithm:

❖ M step: minimise (train) layers

❖ C step: coordinate layers

The coordination step is crucial: it ensures we converge to a minimum
of the nested function (which layerwise training by itself does not do).

MAC/QP is different from pure alternating optimisation over layers:

minEnested(F,g) =
1

2

N∑

n=1

‖yn − g(F(xn))‖
2

❖ Over g for fixed F: fit g to {(F(xn),yn)}
N
n=1 (needs g′(·))

❖ Over F for fixed g: needs backprop. gradients over F (g′(F(·))F′(·))

Pure alternating optimisation 6= “layerwise training”.
p. 18

MAC in general (K layers)

The nested objective function:

Enested(W) =
1

2

N
∑

n=1

‖yn − f(xn;W)‖2 f(x;W) = fK+1(. . . f2(f1(x;W1);W2) . . . ;WK+1)

The MAC-constrained problem:

E(W,Z) =
1

2

N
∑

n=1

∥

∥yn − fK+1(zK,n;WK+1)
∥

∥

2 s.t.

{

zK,n = fK(zK−1,n;WK)
. . .
z1,n = f1(xn;W1)

}

n = 1, . . . , N.

The MAC quadratic-penalty function:

EQ(W,Z;µ) =
1

2

N
∑

n=1

∥

∥yn − fK+1(zK,n;WK+1)
∥

∥

2
+

µ

2

N
∑

n=1

K
∑

k=1

∥

∥zk,n − fk(zk−1,n;Wk)
∥

∥

2
.

Alternating optimisation:

❖ W step: minWk

∑N
n=1

∥

∥zk,n − fk(zk−1,n;Wk)
∥

∥

2, k = 1 . . . ,K + 1.

❖ Z step: minzn
1

2

∥

∥yn − fK+1(zK,n)
∥

∥

2
+ µ

2

∑K
k=1

∥

∥zk,n − fk(zk−1,n)
∥

∥

2, n = 1, . . . , N .

MAC also applies with various loss functions, full/sparse layer connectivity, constraints, etc.

p. 19

MAC in general (K layers): convergence guarantees

Theorem 1: the nested problem and the MAC-constrained problem are equivalent in
the sense that their minimisers, maximisers and saddle points are in a one-to-one
correspondence. The KKT conditions for both problems are equivalent.

Theorem 2: given a positive increasing sequence (µk) → ∞, a nonnegative sequence
(τk) → 0, and a starting point (W0,Z0), suppose the QP method finds an
approximate minimizer (Wk,Zk) of EQ(W

k,Zk;µk) that satisfies
∥
∥∇W,ZEQ(W

k,Zk;µk)
∥
∥ ≤ τk for k = 1, 2, . . . Then, limk→∞ (Wk,Zk) = (W∗,Z∗),

which is a KKT point for the nested problem, and its Lagrange multiplier vector has
elements λ

∗

n = limk→∞ −µk (Z
k
n − F(Zk

n,W
k;xn)), n = 1, . . . , N .

That is, MAC/QP defines a continuous path (W∗(µ),Z∗(µ)) that
converges to a local minimum of the constrained problem and thus to a
local minimum of the nested problem. In practice, we follow this path
loosely.

p. 20

MAC in general (K layers): the design pattern

How to train your system using auxiliary coordinates:

1. Write your nested objective function Enested(W).

2. Identify subexpressions and turn them into auxiliary coordinates
with equality constraints.

3. Apply quadratic-penalty or augmented Lagrangian method.

4. Do alternating optimisation:
❖ W step: reuse a single-layer training algorithm, typically
❖ Z step: needs to be solved specially for your problem

proximal operator; for many important cases closed-form or simple to optimise.

Similar to deriving an EM algorithm: define your probability model, write
the log-likelihood objective function, identify hidden variables, write the
complete-data log-likelihood, obtain E and M steps, solve them.

p. 21

Experiments: deep sigmoidal autoencoder

USPS handwritten digits, 256–300–100–20–100–300–256 autoencoder (K = 5 logistic layers), auxiliary

coordinates at each hidden layer, random initial weights. W and Z steps use Gauss-Newton.

x

y = x

z1

z2

z3

W1

W2

W3

W4

σσ

σσ

σ σ

0 0.5 1 1.5 2
0

5

10

15

20

25

30
µ = 1

101 102 103 104 106

107
108

ob
je

ct
iv

e
fu

nc
tio

n

runtime (hours)

MAC (• = 1 it.)

Parallel MAC
MAC (minibatches)

Parallel MAC (minibatches)

CG (• = 100 its.)

SGD (• = 20 epochs)

p. 22

Experiments: deep sigmoidal autoencoder (cont.)

Typical behaviour in practice:

❖ Very large error decrease at the beginning, causing large changes
to the parameters at all layers
unlike backpropagation-based methods.

❖ Eventually slows down, slow convergence
typical of alternating optimisation algorithms.

❖ “Pretty good net pretty fast”.

❖ Competitive with state-of-the-art nonlinear optimisers, particularly
with many nonlinear layers.

Note: the MAC iterations can be done much faster (see later):

❖ With better optimisation

❖ With parallel processing

p. 23

Experiments: RBF autoencoder

COIL object images, 1024–1368–2–1368–1024 autoencoder (K = 3 hidden layers), auxiliary coordinates

in bottleneck layer only, initial Z. W step uses k-means (Ck) + linsys (Wk). Z step uses Gauss-Newton.

x

y = x

z

C1

W1

C2

W2

φφ

φ φ

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

µ = 1

µ = 5ob
je

ct
iv

e
fu

nc
tio

n

runtime (hours)

MAC
Alt. opt.
Parallel MAC

p. 24

Practicalities

Schedule of the penalty parameter µ:

❖ Theory: µ → ∞ for convergence.

❖ Practice: stop with finite µ.

❖ Keeping µ = 1 gives quite good results.

❖ How fast to increase µ depends on the problem.

❖ We increase µ when the error in a validation set increases.

The postprocessing step:

❖ After the algorithm stops, we satisfy the constraints by:
✦ Setting zkn = fk(zk−1,n;Wk), k = 1, . . . , K, n = 1, . . . , N

That is, project on the feasible set by forward propagation..
✦ Keeping all the weights the same except for the last layer, where

we set WK+1 by fitting fK+1 to the dataset (fK(. . . (f1(X))),Y).
This provably reduces the error.

p. 25

Practicalities (cont.)

Choice of optimisation algorithm for the steps:

❖ W step: typically, reuse existing single-layer algorithm
Linear: linsys; SVM: QP; RBF net: k-means + linsys; etc.

Large datasets: use stochastic updates w/ data minibatches (SGD).

❖ Z step: often closed-form, otherwise:
✦ Small number of parameters in zn: Gauss-Newton

The GN matrix is always positive definite because of the ‖z− ·‖2 terms.

✦ Large number of parameters in zn: CG, Newton-CG, L-BFGS. . .

Standard optimisation and linear algebra techniques apply:

❖ Inexact steps.

❖ Warm starts.

❖ Caching factorisations.

Cleverly used, they can make the W and Z steps very fast.
p. 26

Practicalities (cont.)

Defining the auxiliary coordinates:

❖ With neural nets, we can introduce them before the nonlinearity:
z = σ(wTx+ b) vs z = wTx+ b (linear W step).

❖ No need to introduce auxiliary coordinates at each layer.
Spectrum between fully nested (no auxiliary coordinates, pure backpropagation) and fully unnested

(auxiliary coordinates at each layer, no chain rule).

❖ Can even redefine Z over the optimisation.

The best strategy will depend on the dataset dimensionality and size,
and on the model.

p. 27

Related work: dimensionality reduction

❖ Given high-dim data y1, . . . ,yN ∈ R
D, we want to project to latent

coordinates z1, . . . , zN ∈ R
L with L ≪ D.

❖ Optimise reconstruction error over the reconstruction mapping
f : z → y and the latent coordinates Z:

min
f ,Z

N∑

n=1

‖yn − f(zn)‖
2

where f can be linear (least-squares factor analysis; Young 1941, Whittle 1952. . .) or nonlinear:

spline (Leblanc & Tibshirani 1994), single-layer neural net (Tan & Mavrovouniotis 1995), RBF net

(Smola et al. 2001), kernel regression (Meinicke et al. 2005), Gaussian process (GPLVM; Lawrence

2005), etc.

❖ Problem: nearby zs map to nearby ys, but not necessarily vice
versa. This can produce a poor representation in latent space.

❖ This can be solved by introducing the “inverse” mapping F:y → z.

p. 28

Related work: dimensionality reduction (cont.)

❖ “Dimensionality reduction by unsupervised regression”
(Carreira-Perpinan & Lu, 2008, 2010):

min
f ,F,Z

N∑

n=1

‖yn − f(zn)‖
2 + ‖zn − F(yn)‖

2

✦ Learns both mappings: reconstruction f and projection F,
together with the latent coordinates Z.

✦ Now nearby y’s also map to nearby x’s
f and F become approximate inverses of each other on the data manifold.

✦ Special case of MAC/QP to solve the autoencoder problem:

min
f ,F

N∑

n=1

‖yn − f(F(xn))‖
2

but with µ = 1 (so biased solution).
p. 29

Related work: learning good internal representations

Updating weights and hidden unit activations in neural nets:

❖ Idea originates in 1980s, focused on (single-layer) neural nets.
Grossman et al. 1988, Saad & Marom 1990, Krogh et al. 1990, Rohwer 1990, Olshausen & Field

1996, Ma et al. 1997, Castillo et al. 2006, Ranzato et al. 2007, Kavukcuoglu et al. 2008, Baldi &

Sadowski 2012, etc.

❖ Learning good internal representations was seen as important as
learning good weights.

❖ Desirable activation values were explicitly generated in different
ways: ad-hoc objective function (e.g. to make them sparse),
sampling, etc.

❖ The weights and activations were updated in alternating fashion.

❖ The generation of activation values wasn’t directly related to the
nested objective function, so the algorithm doesn’t converge to a
minimum of the latter.

p. 30

Related work: ADMM and EM

Alternating direction method of multipliers (ADMM):

❖ Optimisation algorithm for constrained problems with separability.

❖ Alternates steps on the augmented Lagrangian over the primal and
dual variables.

❖ Often used in consensus problems:

min
x

N∑

n=1

fn(x) ⇔ min
x1,...,xN ,z

N∑

n=1

fn(xn) s.t. xn = z, n = 1, . . . , N ⇔

minL(X, z,Λ) =
N∑

n=1

(

fn(xn) + λ
T
n (xn − z) +

µ

2
‖xn − z‖2

)

The aug. Lag. L is minimised alternatingly over X, z and Λ.

❖ Can be applied to the MAC-constrained problem as well.

p. 31

Related work: ADMM and EM (cont.)

Expectation-maximisation (EM) algorithm:

❖ Trains probability models by maximum likelihood.

❖ Can be seen as:
✦ bound optimisation
✦ alternating optimisation over the posterior probabilities (E step)

and model parameters (M step).
The posterior probabilities “coordinate” the individual models.

ADMM, EM and MAC/QP have the following properties:

❖ The specific algorithm is very easy to develop in many cases;
intuitive steps where simple models are fit

❖ Convergence guarantees

❖ Large initial steps, eventually slower convergence

❖ Innate parallelism
p. 32

Model selection “on the fly”

❖ Model selection criteria (AIC, BIC, MDL, etc.) separate over layers:

E(W) = Enested(W) + C(W) = nested-error + model-cost
C(W) ∝ total # parameters = |W1|+ · · ·+ |WK |

❖ Traditionally, a grid search (with M values per layer) means testing
an exponential number of nested models, MK .

❖ In MAC, the cost C(W) separates over layers in the W step, so
each layer can do model selection independently of the others,
testing a polynomial number of shallow models, MK.
This still provably minimises the overall objective E(W).

❖ Instead of a criterion, we can do cross-validation in each layer.

❖ In practice, no need to do model selection at each W step.
The algorithm usually settles in a region of good architectures early during the optimisation, with

small and infrequent changes thereafter.

MAC searches over the parameter space of the architecture and over
the space of architectures itself, in polynomial time, iteratively.

p. 33

Experiments: RBF autoencoder (model selection)

COIL object images, 1024–M1–2–M2–1024 autoencoder (K = 3 hidden layers), AIC model selection over

(M1,M2) in {150, . . . , 1368} (50 values ⇒ 502 possible models).

x

y

M1 BFs

z

M2 BFs

C1

W1

C2

W2

φφ

φ φ

20 40 60 80
20

40

60

80

100

120

20 40 60 80

20.5

21

21.5

22

22.5µ = 1

µ = 5

(1 368, 1 368)

(700, 150)

(1 050, 150)

(1 368, 150)

ob
je

ct
iv

e
fu

nc
tio

n

iteration
p. 34

Distributed optimisation

MAC/QP is embarrassingly parallel:

❖ W step:
✦ all layers separate (K + 1 independent subproblems)
✦ often, all units within each layer separate ⇒

one independent subproblem for each unit’s input weight vector
✦ the model selection steps also separate

test each model independently

❖ Z step: all points separate (N independent subproblems)

Enormous potential for parallel implementation:

❖ Unlike other machine learning or optimisation algorithms, where
subproblems are not independent (e.g. SGD).

❖ Suitable for large-scale data.

p. 35

Distributed optimisation: example

❖ Shared-memory multiprocessor model using the Matlab Parallel
Processing Toolbox: change for to parfor in the W and Z loops.
So Matlab sends each iteration to a different server.

❖ Near-linear speedups as a function of the number of processors
even though the Matlab Parallel Processing Toolbox is quite inefficient.

❖ Other options: MPI on a distributed architecture, etc.

2 4 6 8 10 12

2

4

6

number of processors

sp
ee

du
p

Sigmoidal deep net

RBF autoencoder

RBF auto. (learn arch.)

p. 36

Conclusion: the method of auxiliary coordinates (MAC)

❖ Jointly optimises a nested function over all its parameters.

❖ Restructures the nested problem into a sequence of iterations with
independent subproblems; a coordination-minimisation algorithm:
✦ M step: minimise (train) layers
✦ C step: coordinate layers

❖ Advantages:
✦ Easy to develop, reuses existing algorithms for shallow models
✦ Convergent
✦ Efficient
✦ Embarrassingly parallel
✦ Can work with nondifferentiable or discrete layers
✦ Can do model selection “on the fly”

❖ Widely applicable in machine learning, computer vision, speech,
NLP, etc.

p. 37

A long-term goal

Develop a software tool where:

❖ A non-expert user builds a nested system by connecting individual
modules from a library, LEGO-like:
linear, SVM, RBF net, logistic regression, feature selector. . .

❖ The tool automatically:
✦ Selects the best way to apply MAC

choice of auxiliary coordinates, choice of optimisation algorithms, etc.

✦ Reuses training algorithms from a library
✦ Maps the overall algorithm to a target distributed architecture
✦ Generates runtime code.

p. 38

Papers about this work

Main reference (http://faculty.ucmerced.edu/mcarreira-perpinan):

❖ Miguel Á. Carreira-Perpiñán and Weiran Wang: “Distributed optimization of
deeply nested systems”. http://arxiv.org/abs/1212.5921.

Extensions or related work:

❖ Weiran Wang and Miguel Á. Carreira-Perpiñán: “The role of dimensionality
reduction in classification”. http://arxiv.org/abs/XXXX.XXXX.

❖ Weiran Wang and Miguel Á. Carreira-Perpiñán: “Nonlinear low-dimensional
regression using auxiliary coordinates”. AISTATS 2012.

❖ Miguel Á. Carreira-Perpiñán and Zhengdong Lu: “Parametric dimensionality
reduction by unsupervised regression”. CVPR 2010.

❖ Miguel Á. Carreira-Perpiñán and Zhengdong Lu: “Dimensionality reduction by
unsupervised regression”. CVPR 2008.

Work partially supported by NSF CAREER award IIS–0754089 and a Google Faculty
Research Award.

p. 39

http://faculty.ucmerced.edu/mcarreira-perpinan
http://faculty.ucmerced.edu/mcarreira-perpinan
http://arxiv.org/abs/1212.5921
http://arxiv.org/abs/1212.5921
http://arxiv.org/abs/XXXX.XXXX
http://arxiv.org/abs/XXXX.XXXX

	Nested (hierarchical)
systems: examples
	Nested systems
	Shallow vs deep (nested)
systems
	Shallow vs deep (nested)
systems (cont.)
	Training nested systems: backpropagated gradient
	Training nested systems: layerwise, ``filter''
	Training nested systems: layerwise, ``filter'' (cont.)
	Training nested systems: layerwise, ``filter'' (cont.)
	Training nested systems: model selection
	Summary
	The method of auxiliary coordinates (MAC)
	The nested objective function
	The MAC-constrained problem
	The MAC quadratic-penalty function
	What have we achieved?
	Alternating optimisation of the MAC/QP objective
	Alternating optimisation of the MAC/QP objective (cont.)
	Alternating optimisation of the MAC/QP objective (cont.)
	MAC in general (K layers)
	MAC in general (K layers):
convergence guarantees
	MAC in general (K layers):
the design pattern
	Experiments: deep sigmoidal autoencoder
	Experiments: deep sigmoidal autoencoder (cont.)
	Experiments: RBF autoencoder
	Practicalities
	Practicalities (cont.)
	Practicalities (cont.)
	Related work: dimensionality reduction
	Related work: dimensionality reduction (cont.)
	Related work: learning good internal representations
	Related work: ADMM and EM
	Related work: ADMM and EM (cont.)
	Model selection ``on the fly''
	Experiments: RBF autoencoder (model selection)
	Distributed optimisation
	Distributed optimisation: example
	Conclusion: the method of auxiliary coordinates (MAC)
	A long-term goal
	Papers about this work

